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Abstract. This paper presents the derivation of a new boundary element formulation for plate 

bending problems. The Reissner’s plate bending theory is employed. Unlike the conventional 

direct or indirect formulations, the proposed integral equation is based on minimizing the 

relevant energy functional. In doing so, variational methods are used. A collocation based 

series, similar to the one used in the indirect discrete boundary element method, is used to 

remove domain integrals. Hence, a fully boundary integral equation is formulated. The main 

advantage of the proposed formulation is production of a symmetric stiffness matrix similar to 

that obtained in the finite element method. Numerical examples are presented to demonstrate 

the accuracy and the validity of the proposed formulation.  
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1. INTRODUCTION 

Concerning the application of the BEM for thick plate bending problems, the direct 

boundary element formulation originally developed by Vander Weeën [1]. Hence, several 

applications were considered based on this theory; for example: Barcellos and Silva [2] 

extended the formulation to Mindlin plates. El-Zafrany et al. [3] divided the formulation into 

kernels for thin and others for thick plates. Ribeiro and Venturini [4] discussed the application 

of elasto-plastic analysis to the direct formulation. Westphal et al. [5] studied the fundamental 

solution used in plates. Marczak and Creus [6] considered the evaluation of singular integrals 

in the direct integral equation formulation. Fernandes and Konda [7] coupled the formulation 

with beams. To the author’s best knowledge, none of these formulations considered a 

variational boundary integral formulation for the thick Reissner’s plate bending. 

This paper presents the derivation and verifications of new boundary element formulation 

for plate bending problems. Unlike the conventional formulations, the proposed formulation 

is based on generalized variational principle. The Reissner’s plate bending model is 

employed. It is considered a boundary element model because the final integral equation 

involves some boundary integrals that require a boundary discretization evaluation in order to 

be evaluated. Furthermore, all the unknowns are boundary variables. The model is completely 

new. It differs from the classical boundary element formulation in the way it is generated and 

consequently in the final equations. A generalized variational principle is used as a basis for 

its derivation, whereas the conventional boundary element formulation is based on Green's 

formula. 

 

2. THE PROPOSED BEM HYBRID DISPLACEMENT FORMULATION 

The energy functional for the Reissner’s plate bending problems could be obtained as 

follows (Dym and Shamed [8]): 
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After integrating by parts the first two domain integral on the right hand side of equation (1) 

could be converted into boundary integrals (Rashed and Brebbia [9]) and taking into 

consideration the symmetry of the moment stress-resultant tensor and regrouping, equation 

(1) can be written as: 
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The first four integrals in equation (2) involve the domain variables   ( )   ( ). The 

following two integrals, involve the boundary variables  ̃ ( )  ̃ ( )and the last integral 

involves both the domain and boundary variables. 

 

A new variational boundary element formulation for the Ressiner plate bending model is 

obtained by representing the three independent field variables     ̃   ̃  via approximate 

schemes. Hence variational principles are used to minimize the functional   . The stationary 

condition (that corresponds to the equilibrium condition) for such a functional represents an 

approximate integral equation of the problems to approximate the domain terms 

(  ( )   ( )               ( )) in the first four integrals in equation (25). As in the 

indirect boundary element or the super-position formulation for Ressiner’s plate bending 

problems (Mohareb and Rashed[10]),the rotation and the displacement components vector at 

any point (y) inside the domain   could be approximated via a collection series. This series 

contains the product of fundamental solution (   
 (    )) and an unknown set of fictitious 

concentrated tractions (  (  )) located at a set of arbitrary source points (  ), as follows: 

  ( )     
 (    )  (  ) (3)  

Where the subscript (n) denotes arbitrary set of source points (its number could be taken later 

as the number of boundary nodes N) in which the fictitious tractions are applied along the 

direction (xk). 

In a similar way, the traction components at any point (y) inside the domain   could be 

approximated via a collection series containing the products of fundamental solution 

(   
 (    )) and the same unknown fictitious concentrated tractions (  (  )) which are 

located at the same set of points (  ), as follows: 

  ( )     
 (    )  (  ) 

(4)  

Using the representation given in equations (3) and (4), the first integral on the right hand side 

of equation (2) could be re-written as follows: 
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where, 
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In which (N) is the number of boundary points. 

The second and third domain integrals on the right hand side of the equation (2) are set to 

zeros. This is done by making use of considered approximations in equations (3, 4) and 

placing the source points (  )outside the plate boundary therefore:  
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The last domain integral in equation (2) could be represented as follows: 
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where 
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 (10)  

It has to be noted that the vector { } in equation (10) is similar to the one that appears in the 

classical direct boundary element method (Brebbiaet al. [12]) and could be transformed to the 

boundary using similar ways as those given by Rashed and Brebbia [9]. 

 

The boundary displacement and traction vectors denoted by ( ̃ )     ( ̃ ) are approximated 

using quadratic boundary elements therefore: 
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Where,    
 (  )         

 
(  )  are vectors whose components are nodal(  ) values for boundary 

displacements and boundary tractions. 

Using the representation given in equations (11) and (12), the fifth integral of equation (2) 

could be re-written as follows: 
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where 
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In which (N) is the number of the used boundary elements nodes. The sixth integral of 

equation (2) could be re-written as follows: 
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The last integral of equation (2) could be approximated as follows: 

∫  ̃ ( )   ( )   ( )
 ( )

 ∑ {  
 
(  )}

 

         (  )

[ ∫   ( )   
 (     )

  (  )

  (  )]   (  ) 
(19)  

 { }    
 [ ]     

 { }     (20)  

Where 

[ ]     
    ∫   ( )   

 (     )  (  )
  (  )

 (21)  

It has to be noted that the matrix [ ] in equation (21) is similar to the one that appears in the 

classical direct boundary element method (Karam and Telles [12]). 

 

Using the approximations in equations (5, 7, 8, 9, 14, 17 and 20), equation (2) could be re-

written as follows: 
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The final system of algebraic equations could be obtained by computing the stationary 

conditions associate with  in equation (22). This can be obtained by taking the first variation 

of equation (22) as follows: 

    {  }
 ([ ]{ }  [ ]{ }  { })  {  } ([ ] { }  { ̅})  {  } ([ ]{ }

 [ ] { }) (23)  

The functional   is stationary when its first variation    vanishes for any arbitrary values 

of (   (  )    ( )       ( )).Therefore the corresponding generalized Euler`s equations are  

[ ]{ }  [ ]{ }  { }    (24)  

[ ] { }  { ̅}    (25)  

[ ]{ }  [ ] { }    (26)  

The unknown vectors{ }     { }are expressed in terms of the vector{ } to obtain a 

finalsystem of equations involving only the boundary unknown vector{ }. Provided that the 

matrix [ ]is not singular (Karam and Telles [12]), equation (26) could be re-written as 

follows: 

{ }  [[  ] ]  [ ]{ } (27)  

Substituting equation (27) into equation (24) gives: 
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Substituting equation (28) into equation (25) gives: 
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Introducing the following definitions: 
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Hence equation (29) could be re-written as follows: 
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Defining: 

[ ]  [ ] [ ][ ] (32)  

and 

{ }  [ ] { }  { ̅} (33)  

Hence, equation (29) could be re-written as follows: 

[ ]     { }      { }     (34)  

It has been noted that the obtained [ ] or the stiffness matrix is symmetric, positive definite 

and similar to the one obtained from the finite element method (Zienkiewicz [13]). The 

vectors { }     { } are the corresponding vectors of boundary displacements and forces. 

3. SOLUTION AT INTERNAL POINTS 

After solving equation (34), the vector { } is computed from equation (27). Hence the internal 

displacement vector at any point (y) inside the domain ( )is computed using equation (3) as 

follows: follows: 
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Stress resultants at any point (y) inside the domain ( ) are computed after carrying out 

relevant derivatives as follows: 
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and 
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Expanding the index (k) to ( and (3) gives: 
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The new derivatives      
       

       
       

  are given in the appendix. It has to be noted that 

unlike the direct boundary element method (Vander Weeën [1]), all relevant derivatives 

herein are carried out with respect to the coordinate of the field point (  ( )). 

4. NUMERICAL EXAMPLES 

4.1 Clamped circular plate subject to domain load 

A thin, circular plate (radius a, thickness t, Young’s modulus E) is clamped along its outer 

boundary as shown in Figure 1 and is subject to a uniformly distributed load with intensity 

P=P0. The results for the generalized displacements at points (A and B) are evaluated by using 

different meshes and presented in table (1) together with analytical values and results obtained 

from the convention direct boundary elements using quadratic elements is given by Rashed 

[14]. 

(B)(A)

Clamped 

boundary

0.5 a 0.5 a  

Figure 1: Clamped circular plate subjected to domain load 
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Analytical solution 2 1.125 

Presented BEM  2.0358 1.1356 

Conv. direct. BEM [Rashed (2000)] 2.0307 1.1539 

Finite element method 2.0375 1.1356 

Table 1: Results for the generalized displacements at point (A, B) 

It can be seen from Tables (1) that results for the present variational formulation and 

conventional boundary element method is accurate with respect to the analytical values. 

4.2 Square plate with a square central opening 

A square plate with a square central opening is subjected to a uniform surface load p. The 

external edges of the plate are simply supported and the internal edges are free, as shown in 

Figure 2-a) the deflection at the points A, B, and C are calculated. The results are evaluated 

by using mesh indicated in Figure 2-b) and presented in Table (2) together with results 

obtained from the conventional direct boundary element method, finite element method and 

the Finite difference method which given by Tottenham [15], Assume Poisson’s ratio    equal 

to 1/6. 

(a)

A

0.5 a

0.5 a

0
.5

 a
 

B
C

A

12345

(b)
 

Figure 2 Square plate with central opening subjected to domain load 

 Displacement ( x pa/100D ) 

  Boundary element method              

Point Presented BEM Indirect Direct Finite element method Finite difference method 

A 0.21802 0.2188 0.2191 0.2185 0.2174 

B 0.2807 0.3107 0.2818 0.3156 0.3006 

C 0.1535 0.1558 0.1559 - 0.1541 

Table 2: Results for the generalized displacements at point (A, B, C) 
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It can be seen from Tables (2) that results for for the present variational formulation, 

conventional boundary element method, finite element method and finite difference method 

are in good agreement. 

4.3 Curved Plate Bridge 

The 0.3 m curved Plate Bridge shown Figure  is subjected to a uniform surface load of 

intensity -2.0 t/m
2
.The Young’s modulus for the plate material is E=2.5×10

7
 t/m

2
 and 

Poisson’s ratio    equal to 0.25. Figures (4, 5) demonstrate the Deflection and Moment Mxx at 

center line of plate are plotted from CBEM and present BEM. 

 

Figure 3 Curved Plate Bridge subjected to domain load 

 

Figure 4: Deflection along center line 
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Figure 5: Moment Mxx along center line 

5. CONCLUSIONS 

In this paper, a variational boundary element formulation of Reissner’s plate bending 

problems was derived. The formulation was based on minimizing the relevant energy 

functional.A collocation based series is used to remove domain integrals. Hence a fully 

boundary integral equation is formulated. The formulation was transformed into matrix 

equations using quadratic boundary elements, and was implemented into a computer code. 

Several examples with different boundary conditions were tested. It was demonstrated that the 

present formulation results were more accurate compared to results obtained from the 

conventional direct boundary elements, even with fewer number of elements. In addition, the 

present formulation produces symmetric stiffness matrix similar to that obtained from the 

finite element method. Therefore such formulation is very suitable to be coupled with 

boundary and finite elements or to produce a new family of super finite elements; which will 

be considered in future research. 
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